Soliton Solutions of the Perturbed Resonant Nonlinear Schrödinger’s Equation with Full Nonlinearity by Semi-Inverse Variational Principle
نویسنده
چکیده
This paper carries out the integration of the resonant nonlinear Schrödinger’s equation in presence of perturbation terms that are considered with full nonlinearity. The three types of nonlinear media are studied. They are the cubic nonlinearity, power law and log law nonlinearity. The semi-inverse variational principle is applied to extract the analytical soliton solution.
منابع مشابه
Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملTemporal 1-soliton Solution of the Complex Ginzburg-landau Equation with Power Law Nonlinearity
This paper obtains the exact 1-soliton solution of the complex GinzburgLandau equation with power law nonlinearity that governs the propagation of solitons through nonlinear optical fibers. The technique that is used to carry out the integration of this equation is He’s semi-inverse variational principle.
متن کاملSolitons, Shock Waves, Conservation Laws and Bifurcation Analysis of Boussinesq Equation with Power Law Nonlinearity and Dual Dispersion
This paper obtains the soliton solutions to the Boussinesq equation with the effect of surface tension being taken into account. The power law nonlinearity is considered. Three integration tools are adopted in order to extract the soliton solutions. They are the traveling wave hypothesis, ansatz method and the semi-inverse variational principle. Finally, the Lie symmetry approach is adopted to ...
متن کاملSolitons, Shock Waves and Conservation Laws of Rosenau-KdV-RLW Equation with Power Law Nonlinearity
This paper obtains solitary waves, shock waves and singular solitons alon with conservation laws of the Rosenau Kortewegde Vries regularized long wave (R-KdV-RLW) equation with power law nonlinearity that models the dynamics of shallow water waves. The ansatz approach and the semi-inverse variational principle are used to obtain these solutions. The constraint conditions for the existence of so...
متن کاملSolutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کامل